1,584 research outputs found

    Topological phases protected by point group symmetry

    Get PDF
    We consider symmetry protected topological (SPT) phases with crystalline point group symmetry, dubbed point group SPT (pgSPT) phases. We show that such phases can be understood in terms of lower-dimensional topological phases with on-site symmetry, and can be constructed as stacks and arrays of these lower-dimensional states. This provides the basis for a general framework to classify and characterize bosonic and fermionic pgSPT phases, that can be applied for arbitrary crystalline point group symmetry and in arbitrary spatial dimension. We develop and illustrate this framework by means of a few examples, focusing on three-dimensional states. We classify bosonic pgSPT phases and fermionic topological crystalline superconductors with Z2PZ_2^P (reflection) symmetry, electronic topological crystalline insulators (TCIs) with U(1)×Z2P{\rm U}(1) \times {Z}_2^P symmetry, and bosonic pgSPT phases with C2vC_{2v} symmetry, which is generated by two perpendicular mirror reflections. We also study surface properties, with a focus on gapped, topologically ordered surface states. For electronic TCIs we find a Z8×Z2Z_8 \times Z_2 classification, where the Z8Z_8 corresponds to known states obtained from non-interacting electrons, and the Z2Z_2 corresponds to a "strongly correlated" TCI that requires strong interactions in the bulk. Our approach may also point the way toward a general theory of symmetry enriched topological (SET) phases with crystalline point group symmetry.Comment: v2: Minor changes/additions to introduction and discussion sections, references added, published version. 21 pages, 11 figure

    Peer effects of corporate social responsibility

    Get PDF

    Investigation of Langdon effect on the nonlinear evolution of SRS from the early-stage inflation to the late-stage development of secondary instabilities

    Full text link
    In a laser-irradiated plasma, the Langdon effect can result in a super-Gaussian electron energy distribution function (EEDF), imposing significant influences on the stimulated backward Raman scattering (SRS). In this work, the influence of a super-Gaussian EEDF on the nonlinear evolution of SRS is investigated by three wave model simulation and Vlasov-Maxwell simulation for plasma parameters covering a wide range of k{\lambda}De from 0.19 to 0.48 at both high and low intensity laser drives. In the early-stage of SRS evolution, it is found that besides the kinetic effects due to electron trapping [Phys. Plasmas 25, 100702 (2018)], the Langdon effect can also significantly widen the parameter range for the absolute growth of SRS, and the time for the absolute SRS to reach saturation is greatly shorten by Langdon effect within certain parameter region. In the late-stage of SRS, when secondary instabilities such as decay of the electron plasma wave to beam acoustic modes, rescattering, and Langmuir decay instability become important, the Langdon effect can influence the reflectivity of SRS by affecting the secondary processes. The comprehension of Langdon effect on nonlinear evolution and saturation of SRS would contribute to a better understanding and prediction of SRS in inertial confinement fusion

    Ground-Challenge: A Multi-sensor SLAM Dataset Focusing on Corner Cases for Ground Robots

    Full text link
    High-quality datasets can speed up breakthroughs and reveal potential developing directions in SLAM research. To support the research on corner cases of visual SLAM systems, this paper presents Ground-Challenge: a challenging dataset comprising 36 trajectories with diverse corner cases such as aggressive motion, severe occlusion, changing illumination, few textures, pure rotation, motion blur, wheel suspension, etc. The dataset was collected by a ground robot with multiple sensors including an RGB-D camera, an inertial measurement unit (IMU), a wheel odometer and a 3D LiDAR. All of these sensors were well-calibrated and synchronized, and their data were recorded simultaneously. To evaluate the performance of cutting-edge SLAM systems, we tested them on our dataset and demonstrated that these systems are prone to drift and fail on specific sequences. We will release the full dataset and relevant materials upon paper publication to benefit the research community. For more information, visit our project website at https://github.com/sjtuyinjie/Ground-Challenge

    Stability of Strutinsky Shell Correction Energy in Relativistic Mean Field Theory

    Full text link
    The single-particle spectrum obtained from the relativistic mean field (RMF) theory is used to extract the shell correction energy with the Strutinsky method. Considering the delicate balance between the plateau condition in the Strutinsky smoothing procedure and the convergence for the total binding energy, the proper space sizes used in solving the RMF equations are investigated in detail by taking 208Pb as an example. With the proper space sizes, almost the same shell correction energies are obtained by solving the RMF equations either on basis space or in coordinate space.Comment: 9 pages, 4 figure

    Multi-microjoule GaSe-based mid-infrared optical parametric amplifier with an ultra-broad idler spectrum covering 4.2-16 {\mu}m

    Full text link
    We report a multi-microjoule, ultra-broadband mid-infrared optical parametric amplifier based on a GaSe nonlinear crystal pumped at ~2 {\mu}m. The generated idler pulse has a flat spectrum spanning from 4.5 to 13.3 {\mu}m at -3 dB and 4.2 to 16 {\mu}m in the full spectral range, with a central wavelength of 8.8 {\mu}m. The proposed scheme supports a sub-cycle Fourier-transform-limited pulse width. A (2+1)-dimensional numerical simulation is employed to reproduce the obtained idler spectrum. To our best knowledge, this is the broadest -3 dB spectrum ever obtained by optical parametric amplifiers in this spectral region. The idler pulse energy is ~3.4 {\mu}J with a conversion efficiency of ~2% from the ~2 {\mu}m pump to the idler pulse.Comment: 5 pages, 5 figure

    Targeted absolute quantitative proteomics with SILAC internal standards and unlabeled full‐length protein calibrators (TAQSI)

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116918/1/rcm7482.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/116918/2/rcm7482_am.pd
    corecore